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Lifetimes of noisy repellors

Holger Faisst and Bruno Eckhardt
Fachbereich Physik, Philipps-Universita¨t Marburg, D-35032 Marburg, Germany

~Received 11 March 2003; published 22 August 2003!

We study the effects of additive noise on the lifetimes of chaotic repellors. Using first-order perturbation
theory, we argue that noise will increase the lifetime if the escape holes lie in regions where the unperturbed
density is higher than that in the immediate vicinity and that it decreases if the density is lower. Numerical
experiments support the qualitative conclusions also beyond perturbation theory.
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I. INTRODUCTION

Noise can affect the behavior of dynamical systems
many ways. It can induce transitions between otherwise
connected regions~Kramers’ theory,@1#!, it changes the scal
ing near bifurcations@2#, it gives rise to stochastic resonan
@3#, and it can even change repellors into attractors@4#. Some
time ago, Franaszek@5# studied the effects of additive nois
on repellors@6# and found that in some cases it stabilized t
dynamics, i.e., increased the lifetimes. He studied this beh
ior near crises and bifurcations in the dynamics, but the r
sons for the effects on the dynamics remained unclear.
here want to approach the problem from the side of the
tractor which then is perturbed to become a chaotic repe
We will investigate the relation between the noise effects
a nonuniform density in the attractor.

The hypothesis we want to test runs as follows: open
up the attractor into a repellor is achieved by punching ho
into the support of the attractor. Additive noise can pu
trajectories that would barely miss the holes into escape,
can also save trajectories that would escape in the un
turbed situation. Whether the lifetime increases or decrea
then depends on which process is more likely; for a unifo
density, noise will kick out as many trajectories as it sav
so one cannot expect any effect. If the unperturbed densi
the hole region is higher than that in the immediate vicin
more points will be saved than kicked out, and the lifetim
should increase. If the unperturbed density in the hole reg
is lower, more trajectories will escape and the lifetime sho
be reduced.

In Sec. II, we present the perturbative arguments,
lowed by numerical experiments in Sec. III and some fi
remarks in Sec. IV.

II. PERTURBATION THEORY

We start with ad-dimensional map

xn115f~xn! ~1!

that has a chaotic attractor. The associated Frobenius-Pe
equation for the evolution of densitiesr(x) is
1063-651X/2003/68~2!/026215~6!/$20.00 68 0262
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rn11~x!5E dyd~x2f~y!!rn~y! ~2!

5(
i

rn~yi!

uDf~yi !u
, ~3!

whereuDfu is the Jacobi determinant and the summation
tends over all pointsyi that map intox. Noise can be added
as a Gaussian smearing of the propagator, as in a kic
system. The time evolution splits into two parts: the ‘‘kick
~1!, i.e., the application of the deterministic map, and a fr
diffusive spreading. The free diffusion on thed-dimensional
phase space is described by a diffusion kernelKD that solves
the appropriate free diffusion equation withd-function initial
conditions. For instance, for free diffusion in Euclidea
space, the Fokker-Planck equation for a densityr is

ṙ5DDr ~4!

and the diffusion kernel becomes

KD~y,x,t !5
1

~2pDt !d/2
e2(y2x)2/2Dt. ~5!

The combined evolution of kick and diffusion for some tim
T is then described by

rn11~x!5E dzKD~x,z,T!E dyd„z2f~y!…rn~y! ~6!

5E dyKD„x,f~y!,T…rn~y! ~7!

5E dyK~x,y!rn~y!. ~8!

The evolution kernelK in Eq. ~8! can be expanded in
terms of left^lu and right eigenfunctionsul& with eigenval-
uesl,

K5(
l

lul&^lu. ~9!

The existence of an invariant density on the attractor~the
Sinai-Ruelle-Bowen measure! implies the presence of an e
genvaluel51 with right eigenvectoru1&, the invariant den-
©2003 The American Physical Society15-1
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sity, and a corresponding left eigenvector^1u51 because of
conservation of probability. Since the kernelK is not self-
adjoint, left and right eigenvectors are different. Simple e
amples show that the left eigenvectors develop fractal
tures @7#. With noise the finest scale structures are was
out, but higher levels of the fractal hierarchy survive.

In order to turn the attractor into a chaotic repellor, w
punch holes into it. In applications the holes appear thro
crises and other perturbations and appear on many sc
For the purpose of the present analysis, trajectories that e
the holes may be terminated, since their further evolut
does not influence the escape rate. LetO be the domain over
which trajectories are taken out andP the elimination pro-
jection:

P~x,z!5d~x2z!H 1, x¹O
p, xPO.

~10!

This projection depends on a parameterp that will be useful
in tests of the perturbation calculations: Trajectories ente
O continue on with probabilityp and are taken out with
probability 12p. For the holes described before, we have
takep50. The full evolution operator can then be written

KP~x,y!5E dzP~x,z!K~z,y! ~11!

5K~x,y!2E
O

dz@d~x,z!2P~x,z!#K~z,y! ~12!

5K~x,y!1aK1~x,y!. ~13!

The last equation now has the form of an unperturbed pro
gator K plus a small perturbationaK1, where smallness is
controlled by the localization in the regionO and the rate
12p with which points are taken out.a is a formal param-
eter that helps to organize the familiar perturbation exp
sion for eigenvalues and eigenvectors. The leading orde
sult contains as usual the diagonal matrix element of
perturbation,

l'l01a^luK1ul&. ~14!

The deviations of the leading eigenvalue froml051 define
a decay rate,l5exp(2g), where

g'2a^luK1ul&. ~15!

The systems we study here have piecewise smooth inva
densities and the first-order correction to the decay rate h
regular dependence on the setO and the extraction ratep. In
particular, for the logistic map with holes withp50 that is
studied in Ref.@8#, expression~15! gives the smooth back
ground. The simulations by Paar and Pavin@8# also indicate
strong variations in escape rate near short periodic or
which are connected to higher orders in perturbation the
and the complicated spatial structures that are characte
for next to leading eigenvectors@7#.
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III. PIECEWISE LINEAR MAPS WITH NONCONSTANT
INVARIANT DENSITIES

Let us define a family of one-dimensional mapsxn11
5 f c(xn) with a parametercP(0,0.5),

f c~x!55
x/c, 0,x<c

122~x2c!c/~122c!, c,x<1/2

c2~2x21!c/~122c!, 1/2,x<12c

11~x21!/c, 12c,x<1.

~16!

The invariant density is a solution to the Frobenius-Per
equation

rc~x!5E
0

1

dyd@x2 f c~y!#rc~y! ~17!

5 (
x5 f c(xi )

rc~xi !

u f c8~xi !u
, ~18!

where the sum is taken over all preimagesxi of x. For Eq.
~16!, the normalized invariant density is

rc~x!5H 1

4c~12c!
, 0,x,c and 12c,x,1

1

2~12c!
, c,x,12c.

~19!

The main results do not depend on the specific value ofc so
that we can fixc50.2 and drop the subscript onf andr.

For the eigenvalue and eigenvector analysis, we us
matrix representation of the density evolution operatorK.
With the help ofN characteristic functionsfn ,

fn~x!5H 1, ~n21!/N,x,n/N, n51, . . . ,N

0, elsewhere,
~20!

densities can be expanded asr5anfn ~summation implied!
and the evolution operatorK becomes anN3N matrix. Den-
sities are mapped according to

an
(n11)5Knmam

(n) , ~21!

and the matrix elementsKnm can be calculated from the im
ages of the step functions: in the support of the character
function m, a uniformly distributed ensemble of 53105

points is iterated and the probability to end up in the inter
n is then the matrix elementKnm . The typical size of matri-
ces used in the calculations isN53000.

The lifetimes for the maps with holes can be obtain
from the eigenvalues of the evolution operator after proj
tion onto the remaining intervals or directly from integr
tions of an ensemble of initial conditions. We followed 16

randomly selected initial points up to a maximal cutoff lif
time of 104 iterations. The lifetime distributions decayed e
ponentially and the lifetimes estimated from this decay w
within less than 1% of the eigenvalues.
5-2
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A. No holes and no noise

Without noise and without holes, map~16! maps the in-
terval @0,1# into itself. We expect one eigenvalue 1 with th
invariant density as right eigenvector~as in Fig. 1!, and a left
eigenvector that is constant because of conservation of p
ability. The first two pairs of left and right eigenvectors a
shown in Fig. 2. The next to leading eigenvalue isl15
20.6. Its left eigenvector shows the fractal structures o
expects for such maps@7#.

B. With holes but without noise

Pairs of holes of sizee are added symmetrically at th
edges of the invariant density. ‘‘Outer’’ holes at (c2e,c) and
(12c,12c1e) lie within the high density region, ‘‘inner’’
holes at (c,c1e) and (12c2e,12c) in the low density
region.

The perturbation theory from Sec. II predicts a line
variation of escape rate with hole size, so that the ratio
escape rate to hole size should be constant. This is verifie
Fig. 3. The numerical values for the escape rateg agree well

FIG. 1. A graph of map~16! for c50.2 ~dashed! and its invari-
ant densityr ~continuous!.

FIG. 2. Eigenfunctions of map without noise and without hol
The upper row corresponds to the leading eigenvaluel051 and the
lower one to the next to leading eigenvaluel1520.6.
02621
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with the expected values, sum of hole sizes times un
turbed density at holes,g i ,o52er i ,o .

With holes we no longer have conservation of probabili
and the left eigenvector to the leading eigenvalue will not
constant. It develops a fractal structure, which already
hole sizee51023 is difficult to represent numerically. The
left eigenstate for the leading eigenvaluel050.996 855 for
the map with outer holes is shown in Fig. 4. The larg
eigenvalue corresponds to an escape ratego53.15031023

in good agreement with the values extracted from Fig. 3

C. Noisy map without holes

For the map with noise, we add Gaussian distributed r
dom numbers at each time step,

xn115 f ~xn!1jn , ~22!

where thejn are independent and identically distributed a
cording to

p~j!5
1

Aps2
e2j2/s2

, ~23!

with s5A2Dt the amplitude of the noise. Since it is the
possible to leave the interval@0,1#, we close the system pe
riodically by mapping points outside the interval back

.

FIG. 3. Escape rateg divided by the hole sizee for map ~16!
with holes but without noise. The dashed lines at 3.125 and 1.
mark the values expected within first-order perturbation theory.

FIG. 4. Left eigenfunction of map with outer holes of sizee
51023 for the leading eigenvaluel0. The hierarchy of peaks fol-
lows the preimages of the holes.
5-3
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using the modulo operation. The case with noise is the m
regular one, and if the width of the characteristic function
the hole region is a fraction of the noise level, the vect
converge rather reliably, as a comparison between the re
for matrix sizesN53000 andN54000 for noise amplitude
1023 showed.

The eigenfunctions and eigenvalues in the presence
noise of amplitudes51023 are shown in Fig. 5. The firs
eigenvalue remains at 1, the first left eigenvector is unifo
but the step in the first right eigenvector is smoothed o
With increasing noise amplitude, this transition region b
comes wider, as evidenced by the magnifications in Fig.

D. Noisy map with holes

We finally come to our model for a noisy repellor, th
noisy map with holes. Figure 7 shows for holes of sizee
51023 the change in the escape rates as a function of n
amplitude. For outer holes the escape rate decreases, fo
ner holes it increases, until for a noise amplitude of ab

FIG. 6. Magnification of the invariant density for the noisy m
without holes. Noise amplitudes ares51025 ~sharpest transition!,
1023, 1022, and 1021 ~widest transition!.

FIG. 5. Eigenfunctions for the noisy map without holes. T
noise amplitude iss51023. The upper row corresponds to th
leading eigenvaluel051, the lower to the next to leading eigen
valuel1520.6073.
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1022 they almost coincide. This is exactly what one wou
expect from the changes in invariant density shown in Fig
the density on the upper level decreases and the one on
lower increases with the corresponding changes in lifetim
If we had not closed the interval to a circle, the loss
trajectories at the end of the intervals would have swam
this effect and the escape rate would have increased m
tonically with noise level.

The associated eigenfunctions are shown in Fig. 8
outer holes of size 1023 together with a noise amplitud
1023. Compared to the noise free case, structures
smoothed out: for instance, the amplitudes of left eigenfu
tions decrease considerably.

E. Failure of perturbation theory

First-order perturbation theory does not always work t
well. Consider another map,xn115g(xn) on the interval
@0,1# with

FIG. 8. Eigenfunctions of the map with noise amplitudes
51023 and with outer holes of sizee51023. The eigenvalues are
l150.997 45 for the upper graph andl2520.611 38 for the lower
one.

FIG. 7. Escape rateg divided by the hole sizee51023 for the
noisy map with holes. When the holes are in the high density reg
~outer holes! the escape rate decreases, and when they are in
low density region~inner holes! it increases. When noise levels
and hole size are comparable, there is no difference between i
and outer hole placements anymore.
5-4
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LIFETIMES OF NOISY REPELLORS PHYSICAL REVIEW E68, 026215 ~2003!
g~x!5H 1/312x, 0,x<1/3

3~12x!/2, 1/3,x<1.
~24!

Its invariant density is~Fig. 9!

r~x!5H 3/4, 0,x<1/3

9/8, 1/3,x<1.
~25!

Eigenfunctions for the two leading eigenvalues are sho
in Fig. 10. Again we take a left hole at@1/32e,1/3# in the
low density region and a right hole at@1/3,1/31e# in the
high density region. First-order perturbation theory predi
the decay ratesg as functions of hole sizee to be

g r5er r59/8e, ~26!

g l5er l53/4e. ~27!

The numerical values extracted from Fig. 11 are

g r50.87e, ~28!

FIG. 9. Map ~24! ~dashed! and its invariant density~continu-
ous!.

FIG. 10. Eigenfunctions for the leading eigenvaluel051 and
the next to leading eigenvaluel1522/3 for map~24!.
02621
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In agreement with perturbation theory, the escape rate is
portional to the hole size. The prefactors from the two c
culations agree for the left hole in the low, but disagree
the right one in the high density region. The deviation b
comes smaller when the holes are partially closed, i.e.,
parameterp in Eq. ~10! is set to 0.99. Then the perturbativ
and numerical escape rates are in better agreement. This
ure of the perturbative estimate seems to be closely c
nected with the presence of a periodic orbit on the borde
the interval. If the opening is shifted to slightly larger value
then the slope agrees again with the perturbative results

IV. FINAL REMARKS

Within the simple models studied here, the hypothesis t
the variation of lifetimes can be related to inhomogeneities
the invariant density of the unperturbed attractor could
confirmed. Such inhomogeneities are most pronounced
bifurcations and crises@9#, as in the work of Franaszek@5#.
The placement of holes from the outside is less artificial th
it may seem. In the case of riddling bifurcations@10#, line
attractors are broken up by holes that appear near peri
points that are no longer transversally stable, and both p
tion and widths can be controlled externally. Thus, the o
servations discussed here have some bearing on the effec
noise on the lifetimes in riddled attractors.
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FIG. 11. Escape ratesg divided by hole sizee and by (12p)
for map ~24! vs hole size for two placements of the hole and tw
extraction ratesp. The dashed horizontal lines mark the theoretic
values 9/8 and 3/4. For the left hole, the escape rate is in agree
with perturbation theory~circles, forp50). For the opening to the
right at p50 ~squares!, the prefactor does not agree with perturb
tion theory. Forp50.99, the values move up to the first-order pe
turbation theory result~triangles!. If the position of the opening is
moved away from the critical pointx51/3, e.g., to the interval
@0.35,0.351e#, then the perturbative result is also obtained forp
50 ~diamonds!.
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