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Lifetimes of noisy repellors
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We study the effects of additive noise on the lifetimes of chaotic repellors. Using first-order perturbation
theory, we argue that noise will increase the lifetime if the escape holes lie in regions where the unperturbed
density is higher than that in the immediate vicinity and that it decreases if the density is lower. Numerical
experiments support the qualitative conclusions also beyond perturbation theory.
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I. INTRODUCTION
Pn+1(x):f dys(x—=f(y))pn(y) 2

Noise can affect the behavior of dynamical systems in
many ways. It can induce transitions between otherwise dis- pn(Yi)
connected region&ramers'’ theory[1]), it changes the scal- = 2 Dy’ )
ing near bifurcation§2], it gives rise to stochastic resonance
[3], and it can even change repellors into attracidfsSome  where|Df| is the Jacobi determinant and the summation ex-
time ago, Franaszelb] studied the effects of additive noise tends over all pointy; that map intox. Noise can be added
on repellord6] and found that in some cases it stabilized theas a Gaussian smearing of the propagator, as in a kicked
dynamics, i.e., increased the lifetimes. He studied this behawsystem. The time evolution splits into two parts: the “kick”
ior near crises and bifurcations in the dynamics, but the real), i.e., the application of the deterministic map, and a free
sons for the effects on the dynamics remained unclear. Weiffusive spreading. The free diffusion on tdedimensional
here want to approach the problem from the side of the atPhase space is described by a diffusion kekyglthat solves
tractor which then is perturbed to become a chaotic repelloithe appropriate free diffusion equation wigkfunction initial
We will investigate the relation between the noise effects angonditions. For instance, for free diffusion in Euclidean
a nonuniform density in the attractor. space, the Fokker-Planck equation for a dengitg

The hypothesis we want to test runs as follows: opening .
up the attractor into a repellor is achieved by punching holes p=DAp )
intc_) the.support of the attractqr. Additive npise can push, 4 the diffusion kernel becomes
trajectories that would barely miss the holes into escape, but
can also save trajectories that would escape in the unper- 1 )
turbed situation. Whether the lifetime increases or decreases Kp(y,x,t)=————-e (/707201 ®
then depends on which process is more likely; for a uniform (27DY)
density, noise will kick out as many trajectories as it saveSihg combined evolution of kick and diffusion for some time
so one cannot expect any effect. If the unperturbed density iy js then described by
the hole region is higher than that in the immediate vicinity,
more points will be saved than kicked out, and the lifetime
should increase. If the unperturbed density in the hole region p”“(x):f dZKD(X'Z’T)J dys(z=f(y)ea(y)  (6)
is lower, more trajectories will escape and the lifetime should

be reduced.
In Sec. Il, we present the perturbative arguments, fol- :f dyKop (. f(y), Dpn(y) @)
lowed by numerical experiments in Sec. Il and some final
remarks in Sec. IV.
= | dyK(X,y)pn(Y)- 8
Il. PERTURBATION THEORY The evolution kerneK in Eg. (8) can be expanded in
terms of left(\| and right eigenfunctionf\) with eigenval-
We start with ad-dimensional map ues\,
1= 1050) & K=22 A ©

The existence of an invariant density on the attra¢tbe
that has a chaotic attractor. The associated Frobenius-Perr@inai-Ruelle-Bowen measyramplies the presence of an ei-
equation for the evolution of densitiggx) is genvalue\ = 1 with right eigenvectof1), the invariant den-
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sity, and a corresponding left eigenvectdt=1 because of  Ill. PIECEWISE LINEAR MAPS WITH NONCONSTANT
conservation of probability. Since the kerri€lis not self- INVARIANT DENSITIES

adjoint, left and right eigenvectors are different. Simple ex-
amples show that the left eigenvectors develop fractal fea-
tures[7]. With noise the finest scale structures are washed
out, but higher levels of the fractal hierarchy survive.

In order to turn the attractor into a chaotic repellor, we
punch holes into it. In applications the holes appear through F(x)= 1-2(x—c)c/(1-2¢), c<x=1/2
crises and other perturbations and appear on many scales. ¢ c—(2x—1)c/(1-2c), 1/2<x=<1-c
For the purpose of the present analysis, trajectories that enter
the holeps rFTJ1ay be terrginated, singe theirqurther evolution 1+(x=Dle, 1-c=<x=1.
does not influence the escape rate. Qdbe the domain over Thg invariant density is a solution to the Frobenius-Perron
which trajectories are taken out afdthe elimination pro- equation
jection:

Let us define a family of one-dimensional magps, 1
f.(X,) with a parametec e (0,0.5),

x/c, 0<x=<c

(16)

1
1, x¢0 Pc(X)=f0 dys[x—fe(y)Ipc(y) 17

P(x,z)=8(x—2) b, XcO. (10

This projection depends on a paramegighat will be useful = pf(x')
in tests of the perturbation calculations: Trajectories entering x=Tob) [fe(xi)]
O continue on with probabilityp and are taken out with h h i tak I . f

probability 1—p. For the holes described before, we have toVhere the sum 1S ta.en over all preimagesor x. For Eg.
takep=0. The full evolution operator can then be written as(l6)’ the normalized invariant density is

: (18

1
Kp(X,y)= f dzP(x,2)K(zy) (11) Zo(i—g O=x=cand Ircsx<l
pc(X)= 1
=K(x,y)—fodz[ﬁ(x,z)—P(x,z)]K(z,y) (12 (19

The main results do not depend on the specific value suf
=K(x,y)+ aKy(x,y). (13)  that we can fixxc=0.2 and drop the subscript drand p.
For the eigenvalue and eigenvector analysis, we use a

The last equation now has the form of an unperturbed propahatrix representation of the density evolution operator
gator K plus a small perturbationK,, where smallness is With the help ofN characteristic functiong,
controlled by the localization in the regioft and the rate
1—p with which points are taken out is a formal param- b.(X)= 1L (v»=DIN<x<wIN, »=1,...N
eter that helps to organize the familiar perturbation expan- " 0, elsewhere,
sion for eigenvalues and eigenvectors. The leading order re-
sult contains as usual the diagonal matrix element of thélensities can be expanded@s a,¢, (summation implied
perturbation, and the evolution operatdét becomes alN X N matrix. Den-

sities are mapped according to

(20

A=Not+ a(N|K{|N). 14
ot (N [Ki[N) (14 R o
The deviations of the leading eigenvalue frag=1 define
a decay rate) =exp(—y), where and the matrix elements,,, can be calculated from the im-
ages of the step functions: in the support of the characteristic
y=~— a(N|Kq[\). (15  function u, a uniformly distributed ensemble of>510°

points is iterated and the probability to end up in the interval
The systems we study here have piecewise smooth invariamtis then the matrix elemeng,,, . The typical size of matri-
densities and the first-order correction to the decay rate hasaes used in the calculations = 3000.
regular dependence on the getand the extraction rate. In The lifetimes for the maps with holes can be obtained
particular, for the logistic map with holes wigh=0 that is  from the eigenvalues of the evolution operator after projec-
studied in Ref[8], expression15) gives the smooth back- tion onto the remaining intervals or directly from integra-
ground. The simulations by Paar and Pa8halso indicate tions of an ensemble of initial conditions. We followed®10
strong variations in escape rate near short periodic orbiteandomly selected initial points up to a maximal cutoff life-
which are connected to higher orders in perturbation theoryime of 1¢# iterations. The lifetime distributions decayed ex-
and the complicated spatial structures that are characteristmonentially and the lifetimes estimated from this decay were
for next to leading eigenvectofg]. within less than 1% of the eigenvalues.
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0 0.2 04 0.6 0.8 1 FIG. 3. Escape rate divided by the hole size for map (16)

with holes but without noise. The dashed lines at 3.125 and 1.125

FIG. 1. A graph of mag(16) for ¢=0.2 (dashegland its invari- mark the values expected within first-order perturbation theory.

ant densityp (continuous.

with the expected values, sum of hole sizes times undis-
turbed density at holesy; ,=2ep; .

Without noise and without holes, mdf6) maps the in- With holes we no longer have conservation of probability,
terval[0,1] into itself. We expect one eigenvalue 1 with the and the left eigenvector to the leading e|genv_alue will not be
invariant density as right eigenvect@s in Fig. 2, and a left ~ constant. It devel_ops_a_ fractal structure, wh|ch_ already for
eigenvector that is constant because of conservation of profiiole sizee=10* is difficult to represent numerically. The
ability. The first two pairs of left and right eigenvectors are |€ft eigenstate for the leading eigenvalug=0.996 855 for
shown in Fig. 2. The next to leading eigenvalue\is= the map with outer holes is shown in Fig. 4. The largest

; i -3
—0.6. Its left eigenvector shows the fractal structures oné&igenvalue corresponds to an escape ngte 3.150< 10
expects for such magg]. in good agreement with the values extracted from Fig. 3.

A. No holes and no noise

B. With holes but without noise C. Noisy map without holes

For the map with noise, we add Gaussian distributed ran-
dom numbers at each time step,

Xnr1=F(Xp) + &n,

Pairs of holes of size& are added symmetrically at the
edges of the invariant density. “Outer” holes at €,c) and
(1—-c,1—-c+e¢) lie within the high density region, “inner”
holes at €,c+¢€) and (1-c—¢,1—c) in the low density
region. . , _ where the¢, are independent and identically distributed ac-

The perturbation theory from Sec. Il predicts a “nearcording to
variation of escape rate with hole size, so that the ratio of
escape rate to hole size should be constant. This is verified in
Fig. 3. The numerical values for the escape ratgree well

(22)

1 2) 2
p(§)=—e &7, (23)

mo

left eigenfunctions right eigenfunctions

with o= /2Dt the amplitude of the noise. Since it is then
possible to leave the intervf0,1], we close the system pe-

1.5 - 15
riodically by mapping points outside the interval back in

1.0 1.0

0.5 L 05

]
00 0 0.5 1 00 0 0.5 1
10.0 : 2.0
0.5
. . 0 . .
0 0.5 1 0 05 1 0 0.2 0.4 0.6 0.8 1
X X X

FIG. 4. Left eigenfunction of map with outer holes of size
=102 for the leading eigenvaluk,. The hierarchy of peaks fol-
lows the preimages of the holes.

FIG. 2. Eigenfunctions of map without noise and without holes.
The upper row corresponds to the leading eigenvalsel and the
lower one to the next to leading eigenvalug=—0.6.
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left eigenfunctions right eigenfunctions 35 T T T T T T
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%J. L
0.5 1 05 2r T
0.0 5 05 ] 0.0 p 05 ] 15 inner holes i
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3 [y}
0 FIG. 7. Escape ratg divided by the hole size=10"2 for the
noisy map with holes. When the holes are in the high density region
3] (outer holes the escape rate decreases, and when they are in the
low density region(inner hole$ it increases. When noise level
6 and hole size are comparable, there is no difference between inner
0 05 1 0 0.5 1 and outer hole placements anymore.
X X

FIG. 5. Eigenfunctions for the noisy map without holes. The 10~ they almost coincide. This is exactly what one would
noise amplitude isr=10"3. The upper row corresponds to the €XPect fr(_)m the changes in invariant density shown in Fig. 6:
leading eigenvalua,=1, the lower to the next to leading eigen- the density on the upper level decreases and the one on the
value\;=—0.6073. lower increases with the corresponding changes in lifetime.
If we had not closed the interval to a circle, the loss of
%]ajectories at the end of the intervals would have swamped

using the modulo operation. The case with noise is the morg*© .
g b this effect and the escape rate would have increased mono-

regular one, and if the width of the characteristic function for, "~ lIv with noise level
the hole region is a fraction of the noise level, the vectorston_:_cha y Wi _nct)lsde eve 'f i h in Fig. 8
converge rather reliably, as a comparison between the results € associated eigentunctions are shown in Fig. or

for matrix sizesN=3000 andN=4000 for noise amplitude outer holes of size 1C° toget.her with a noise amplitude
10~3 showed 10" 3. Compared to the noise free case, structures are

c§=n1oothed out: for instance, the amplitudes of left eigenfunc-

The eigenfunctions and eigenvalues in the presence )
tions decrease considerably.

noise of amplituder=10"2 are shown in Fig. 5. The first
eigenvalue remains at 1, the first left eigenvector is uniform, ] )

but the step in the first right eigenvector is smoothed out. E. Failure of perturbation theory

With increasing noise amplitude, this transition region be- First-order perturbation theory does not always work that
comes wider, as evidenced by the magnifications in Fig. 6.well. Consider another map,,;=g(x,) on the interval

[0,1] with
D. Noisy map with holes left eigenfunctions right eigenfunctions
We finally come to our model for a noisy repellor, the
. . . ; 1.5 1 1.5
noisy map with holes. Figure 7 shows for holes of size
=102 the change in the escape rates as a function of nois&1 10
. L LA ML A L) .
amplitude. For outer holes the escape rate decreases, for it ]T' ! I ol 'ﬂ"
ner holes it increases, until for a noise amplitude of about, 5 | 05
T 0.0 0.0
0 05 1 0 0.5 1
6 2

w0
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FIG. 8. Eigenfunctions of the map with noise amplitude
FIG. 6. Magnification of the invariant density for the noisy map =102 and with outer holes of size=10"3. The eigenvalues are
without holes. Noise amplitudes ave=10"° (sharpest transition ~ \;=0.997 45 for the upper graph aig= —0.611 38 for the lower
1073, 1072, and 10! (widest transition one.
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FIG. 9. Map (24) (dashed and its invariant densitycontinu-
ous.

1/3+ 2x, 0<x=<1/3
90=131-x)/2, 1/3<x=1. 29
Its invariant density iFig. 9
3/4, 0<x=<1/3
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0.6 1 1 1 1

FIG. 11. Escape rateg divided by hole sizes and by (1-p)
for map (24) vs hole size for two placements of the hole and two
extraction rateg. The dashed horizontal lines mark the theoretical
values 9/8 and 3/4. For the left hole, the escape rate is in agreement
with perturbation theorycircles, forp=0). For the opening to the
right atp=0 (square} the prefactor does not agree with perturba-
tion theory. Forp=0.99, the values move up to the first-order per-
turbation theory resulftriangles. If the position of the opening is
moved away from the critical poimt=1/3, e.g., to the interval
[0.35,0.35- €], then the perturbative result is also obtained ffor
=0 (diamonds.

Eigenfunctions for the two leading eigenvalues are shown

in Fig. 10. Again we take a left hole &/3—¢€,1/3] in the
low density region and a right hole &1/3,1/3+ €] in the

,=0.75%. (29)

high density region. First-order perturbation theory predictdn agreement with perturbation theory, the escape rate is pro-

the decay ratey as functions of hole size to be
v, = €p, = 9/8e, (26)
Y= €p;=3l4e. (27
The numerical values extracted from Fig. 11 are
v, = 0.87e, (28)

left eigenfunctions right eigenfunctions

1.5 t 1.5
1.0 1.0
0.5 r 05
0.0
0 0.5 1
2
1 4
0 4
-1 1
s i Py .
0 0.5 1 0 0.5 1
X X

FIG. 10. Eigenfunctions for the leading eigenvalug=1 and
the next to leading eigenvalug = —2/3 for map(24).

portional to the hole size. The prefactors from the two cal-
culations agree for the left hole in the low, but disagree for
the right one in the high density region. The deviation be-
comes smaller when the holes are partially closed, i.e., the
parametep in Eq. (10) is set to 0.99. Then the perturbative
and numerical escape rates are in better agreement. This fail-
ure of the perturbative estimate seems to be closely con-
nected with the presence of a periodic orbit on the border of
the interval. If the opening is shifted to slightly larger values,
then the slope agrees again with the perturbative results.

IV. FINAL REMARKS

Within the simple models studied here, the hypothesis that
the variation of lifetimes can be related to inhomogeneities in
the invariant density of the unperturbed attractor could be
confirmed. Such inhomogeneities are most pronounced near
bifurcations and crisef9], as in the work of Franaszdk].

The placement of holes from the outside is less artificial than
it may seem. In the case of riddling bifurcatiofi], line
attractors are broken up by holes that appear near periodic
points that are no longer transversally stable, and both posi-
tion and widths can be controlled externally. Thus, the ob-
servations discussed here have some bearing on the effects of
noise on the lifetimes in riddled attractors.

ACKNOWLEDGMENT

Support from the Deutsche Forschungsgemeinschaft is
gratefully acknowledged.

026215-5



H. FAISST AND B. ECKHARDT PHYSICAL REVIEW E68, 026215(2003

[1] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phgg, [7] P. Gaspard, I. Claus, T. Gilbert, and J.R. Dorfman, Phys. Rev.

251(1990. Lett. 86, 1506(2001); P. GaspardChaos, Scattering and Sta-
[2] B. Shraiman, C.E. Wayne, and P.C. Martin, Phys. Rev. Lett. tistical Mechanics(Cambridge University Press, Cambridge,
46, 935(1981). 1998; S. Tasaki and P. Gaspard, J. Stat. Pigjs935(1995;
[3] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev. P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E
Mod. Phys.70, 223(1998. 51, 74 (1995.

[4] L. Arnold, H. Crauel, and V. Wihstutz, SIAM J. Control Op- [8] V. Paar and N. Pavin, Phys. Rev.55, 4112(1997.
tim. 21, 451(1983; H. Crauel, Arch. Math75, 472 (2000. [9] C. Grebogi, E. Ott, and J.A. Yorke, Physica7181 (1983.
[5] M. Franaszek, Phys. Rev. Ad, 4065 (199D; M. Franaszek 1] A s. Pikovsky and P. Grassberger, J. Phy@4A4587(1991);

6 _Ia_nfjré_. .Fr(I)Dr.]zon.i, Ph_ys.c}?]ev. %'3%83(1394).8 _LinWorld E. Oftt, J.C. Alexander, |. Kan, J.C. Sommerer, and J.A. Yorke,
[6] T. Td, in Directions in Chaosedited by Hao Bai-Lin\Wor Physica D76, 384 (1994).

Scientific, Singapore, 1990Vol. 3, p. 149.

026215-6



